# Solvent-controlled chemoselective palladium-catalyzed oligomerization of tert-butyl acetylene 

Jin-Sheng Cheng ${ }^{\text {a,b,* }}$, Guo-Feng Wei ${ }^{\text {a }}$, Shi-Wen Huang ${ }^{\text {a }}$, Jin-Zhao ${ }^{\text {a }}$, Huan-Feng Jiang ${ }^{\text {c }}$<br>${ }^{\text {a }}$ School of Basic Medical Science, Youjiang Medical College for Nationalities, Baise 533000, China<br>${ }^{\mathrm{b}}$ Guangzhou Institute of Biomedicine \& Health, Chinese Academy of Sciences, Guangzhou 510650, China<br>${ }^{c}$ School of Chemistry, South China University of Technology, Guangzhou 510641, China

Received 3 May 2006; received in revised form 15 August 2006; accepted 20 August 2006
Available online 25 August 2006


#### Abstract

A solvent-controlled chemoselective palladium-catalyzed oligomerization of tert-butyl acetylene was reported in this paper. The reaction was carried out smoothly in benzene $/ n$-BuOH binary solvents system. When benzene, unpolar aprotic solvent, became preponderating in the binary solvents system, a cyclotrimerization process occurred to produce 1,3,5-tri-tert-butylbenzene via a mechanism of three acetylene molecular to insert step by step forming $\sigma$-butadienyl-Pd and $\sigma$-hexatrienyl-Pd intermediates, etc., while when the polar protic component $n$ - BuOH , which dissolves more $\mathrm{CuX}_{2}$ than benzene in the process, was increased to a certain extent in the binary solvents system, the reaction proceed readily to give ( $3 Z, 5 Z$ )-2,2,7,7-tetramethyl-3,6-dichloro-3,5-octadiene or ( $3 Z, 5 Z$ )-2,2,7,7-tetramethyl-3,6-dibromo-3,5-octadiene, respectively. Meanwhile, a coupling product 2,2,7,7-tetramethyl-3,5-octadiyne was given exclusively when the reaction was conducted in singular polar $\mathrm{H}_{2} \mathrm{O}$. Influences of the solvents, catalysts, as well as possible mechanisms in the reaction were discussed in this paper.


© 2006 Published by Elsevier B.V.
Keywords: Solvent-controlled; Oligomerization; tert-Butyl acetylene; Palladium-catalyzed; Chemoselectivity

## 1. Introduction

The development of novel palladium-catalyzed oligomerization of alkyne transformations to selectively construct benzene derivatives or conjugated diene skeletons is a promising area for exploration. Moreover, few reports on solvent-controlled chemoselective oligomerization of alkyne to substituted benzene or diene derivatives have been demonstrated [1,2]. We have recently reported the palladium-catalyzed [ $2+2+2$ ] and $[2+2+1]$ oligomerization of alkynes to form benzenes or cyclopentadiene products in different reaction medias (supercritical carbon dioxide or ionic liquids, etc.) [3,7], the reaction medias were found to influence reaction chemoseletivity to some extent.

Experimental results showed that traditional solvent could also influence the chemoselectivity of palladium-catalyzed

[^0]oligomerization of alkynes. This finding was expected to have a broad impact on the studies of palladium-catalyzed organic reactions leading to new methodology $[5,8]$.
tert-Butyl acetylene (3,3-dimethyl-1-butyne), typical terminal alkyne with bulky tert-butyl substituent, possesses some unique characteristics in the palladium-catalyzed oligomerization reaction. Ian P. Rothwell and his co-workers had developed a series titanium catalysts, which could controlled the chemoselectivity of the oligomerization reaction of tertbutyl acetylene to a certain degree, 1,3,5-tri-tert-butylbenzene, 1,3,6-tri(tert-butyl)fulvene or other oligomer were given in a controllable manner (Scheme 1) [4].

It has been reported that $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ mediated cyclotrimerization of tert-butyl acetylene at $20^{\circ} \mathrm{C}$ [6]: (1) in acetone only a trimer product 1,3,5-tri-tert-butylbenzene was given and (2) while in $\mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a complicated palladic complex was obtained. These results indicated that besides catalysts, solvents could also affect the chemoselectivity in some cases. Herein, we report another example of solventcontrolled chemoselective palladium-catalyzed oligomerization of tert-butyl acetylene.


Scheme 1.

## 2. Results and discussion

We carried out the oligomerization reaction in the presence of a catalytic amount of the palladium catalyst and 2 equiv. of cupric catalyst, and found that solvent choices play important roles in the palladium-catalyzed oligomerization of tert-butyl acetylene (Scheme 2).

We found that in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{PdX}_{2}$ and 2 equiv. of $\mathrm{CuX}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$, the optimum yield of 2 (1,3,5-tri-tertbutylbenzene, Scheme 2) was observed when the volume ratio of benzene $/ n-\mathrm{BuOH}$ was $10 / 0.6$ ( $100 \%$, entries 3-4, Table 1).

It was interesting that catalyzed by $5 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}$ and 2 equiv. of $\mathrm{CuCl}_{2}$, when the volume ratio of benzene $/ n-\mathrm{BuOH}$ was changed to $3 / 7.6,93 \%$ yield of 3 ( $(3 Z, 5 Z)-2,2,7,7-$ tetramethyl-3,6-dichloro-3,5-octadiene, Scheme 2) was given exclusively (entry 17, Table 1). Similarly, catalyzed by $\mathrm{PdBr}_{2}$ and $\mathrm{CuBr}_{2}$, in benzene $/ n-\mathrm{BuOH}$ (with a volume ratio of $3 / 7.6$ ), the reaction ran smoothly and $90 \%$ yield of $4((3 Z, 5 Z)-2,2,7,7-$ tetramethyl-3,6-dibromo-3,5-octadiene) was obtained (entry 19, Table 1), no 2 was observed in the above two processes, these results showed that both the catalysts $\left(\mathrm{PdX}_{2}\right.$ and $\mathrm{CuX}_{2}, \mathrm{X}=\mathrm{Cl}$, $\mathrm{Br})$ and solvents could affect the chemoselectivity of the reactions.

The results of $\mathrm{PdX}_{2}$ and $\mathrm{CuX}_{2}$-catalyzed oligomerization of tert-butyl acetylene were summarized in Table 1. As shown in Table 1, solvents were crucial for the chemoselectivity of the oligomerization reaction. In the presence of $\mathrm{PdX}_{2}$ and $\mathrm{CuX}_{2}$, the yield selectivity to cyclotrimerization product 2 and dimer-
ization product 3 (or $\mathbf{4}$ ) depends upon the volume ratios of $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}$ : (1) in $\mathrm{C}_{6} \mathrm{H}_{6}$ alone, $74 \%$ yield of 2 was given (entry 1, Table 1), while when the volume ratio was changed to $10 / 0.6$, the yield of 2 increased rapidly to $100 \%$ (entries 3,4 , Table 1), (2) in a volume ratio of $9 / 1.6$, the yield of 2 decreased distinctly, some by-products, $\mathbf{3}$ or $\mathbf{4}$, was also observed (entries 8,9 , Table 1), (3) when the ratios of $\mathrm{C}_{6} \mathrm{H}_{6} / n$ - BuOH range from $9 / 1.6$ to $3 / 7.6$, with the ratio of $n-\mathrm{BuOH}$ increased step by step, $\mathbf{3}$ (or 4) became dominant product gradually. The structures of $\mathbf{3}$ and $\mathbf{4}$ were confirmed through GC-MS, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR spectra. Compound 3 was also confirmed by X-ray crystallography (Fig. 1), (4) in a range of $4 / 6.6-0 / 10.6$ (volume ratio), product $\mathbf{3}$ (or 4) was given exclusively. The optimum results were observed when the volume ratio was $3 / 7.6$ ( $93 \%$ of $\mathbf{3}$ or $90 \%$ of 4, entries 17 and 19, Table 1), (4) in $\mathrm{H}_{2} \mathrm{O}, 5$ (2,2,7,7-tetramethyl-3,5-octadiyne) was obtained for the sole product (entries 20-22, Table 1), (5) ratios 9.3/1.3 $\left(\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}\right)$ and $4.5 / 6.1$ were observed for two critical points, in a range of 9.3/1.3-4.5/6.1, a mixture of $\mathbf{2}$ and $\mathbf{3}$ (or $\mathbf{2}$ and 4) were obtained.

The cage of $\mathbf{3}$ has a symmetric structure containing two conjugated double bonds, which attached to tert-butyl substituent and chlorine atom, respectively. The bond distance of $\mathrm{C}(1)-\mathrm{C}(1 \mathrm{~A})$ is $1.444(4) \AA$, obviously shorter than the bond distance of $\mathrm{C}(2)-\mathrm{C}(3)(1.509(3) \AA)$, this could be explained by hybrid orbital theory: the former can be recognized as $\mathrm{sp}^{2}-\mathrm{sp}^{2}$, while the latter can be considered as $\mathrm{sp}^{2}-\mathrm{sp}^{3}$. Both the bond lengths of $C(1)-C(1 A)$ and $C(2 A)-C(3 A)$ (confirmed for $C-C$ bonds) are considerably longer than that of $\mathrm{C}(1)-\mathrm{C}(2)$ (determined for a


Scheme 2.

Table 1
Solvent-controlled $\mathrm{PdX}_{2}$ and $\mathrm{CuX}_{2}$-catalyzed oligomerization of tert-butyl acetylene ${ }^{\mathrm{a}}$

| Entry | Solvent volume ratio ${ }^{\text {b }}$ | Time (h) | $T\left({ }^{\circ} \mathrm{C}\right)$ | Conversion ${ }^{\text {c }}$ (\%) | Isolated yield (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | ( $2 / 3$ or $2 / 4$ ) | 5 |
| 1 | 10.6/0 | 12 | 40 | 79 | 74 (2/3, 100/0) | Trace |
| 2 | 10/0.6 | 18 | r.t. | 90 | 85 (2/3, 100/0) | Trace |
| 3 | 10/0.6 | 12 | 40 | 100 | $100(2 / 3,100 / 0)$ | 0 |
| $4^{\text {d }}$ | 10/0.6 | 12 | 40 | 100 | $100(2 / 3,100 / 0)$ | 0 |
| $5{ }^{\text {e }}$ | 10/0.6 | 12 | 40 | 41 | 35 (2/3, 100/0) | Trace |
| 6 | 9.6/1.0 | 12 | 40 | 100 | $94(2 / 3,100 / 0)$ | Trace |
| 7 | 9.3/1.3 | 12 | 40 | 100 | $89(2 / 3,93 / 7)$ | Trace |
| 8 | 9/1.6 | 12 | 40 | 100 | $93(\mathbf{2} / \mathbf{3}, 85 / 15)$ | Trace |
| $9^{\text {d }}$ | 9/1.6 | 12 | 40 | 100 | $94(2 / 3,85 / 15)$ | Trace |
| 10 | 8/2.6 | 12 | 40 | 100 | $92(2 / 3,68 / 32)$ | Trace |
| 11 | 7/3.6 | 12 | 40 | 100 | $92(\mathbf{2} / \mathbf{3}, 52 / 48)$ | Trace |
| 12 | 6/4.6 | 12 | 40 | 100 | $90(\mathbf{2} / \mathbf{3}, 52 / 48)$ | Trace |
| 13 | 6.5/4.1 | 12 | 40 | 99 | $91(\mathbf{2} / \mathbf{3}, 49 / 51)$ | Trace |
| 14 | 5/5.6 | 12 | 40 | 100 | $89(\mathbf{2} / \mathbf{3}, 8 / 92)$ | Trace |
| 15 | 4.5/6.1 | 12 | 40 | 100 | $89(2 / 3,2 / 98)$ | Trace |
| 16 | 4/6.6 | 12 | 40 | 100 | $92(\mathbf{2} / \mathbf{3}, 0 / 100)$ | Trace |
| 17 | 3/7.6 | 12 | 40 | 100 | 93 (2/3, 0/100) | Trace |
| 18 | 0/10.6 | 12 | 40 | 100 | 78 (2/3, 0/100) | Trace |
| $19^{\text {d }}$ | 3/7.6 | 12 | 40 | 100 | 90 (2/4, 0/100) | Trace |
| 20 | - ${ }^{\text {f }}$ | 12 | 40 | 45 | Trace (2) | 43 |
| 21 | _g | 12 | 40 | 19 | 0 | 17 |
| 22 | $-^{\text {h }}$ | 12 | 40 | 48 | Trace (2) | 46 |

${ }^{\text {a }}$ Reaction conditions: tert-butyl acetylene $1(1 \mathrm{mmol}), \mathrm{PdCl}_{2}(10 \mathrm{mg}, 0.056 \mathrm{mmol}), \mathrm{CuCl}_{2}(2 \mathrm{mmol})$, and benzene $/ n-\mathrm{BuOH}(10.6 \mathrm{ml}$, desired volume ratio).
b Volume ratio of benzene $/ n-\mathrm{BuOH}$.
${ }^{c}$ Detected by GC.
${ }^{\mathrm{d}}$ Catalyzed by $\mathrm{PdBr}_{2}(0.056 \mathrm{mmol})$ and $\mathrm{CuBr}_{2}(2 \mathrm{mmol})$ instead of $\mathrm{PdCl}_{2}$ and $\mathrm{CuCl}_{2}$.
${ }^{\mathrm{e}}$ In the absence of $\mathrm{CuX}_{2}$.
f $100 \% \mathrm{H}_{2} \mathrm{O}$ as the solvent instead of benzene $/ n-\mathrm{BuOH}, \mathrm{PdCl}_{2}-\mathrm{CuCl}_{2}$ was used for catalysts.
$\mathrm{g} 100 \% \mathrm{H}_{2} \mathrm{O}$ as the solvent instead of benzene $/ n-\mathrm{BuOH}$, only $\mathrm{CuCl}_{2}$ was used for catalyst.
h $100 \% \mathrm{H}_{2} \mathrm{O}$ as the solvent instead of benzene $/ n-\mathrm{BuOH}, \mathrm{PdBr}_{2}-\mathrm{CuBr}_{2}$ was used for catalysts.
$\mathrm{C}=\mathrm{C}$ bond conjugated with $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A})$. And the $\mathrm{C}-\mathrm{H}$ distances were observed in a anticipated range of $0.92(3)-1.02(3) \AA$, e.g. bond $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) 0.880 \AA$, bond $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A}) 0.97 \AA$, bond $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C}) 1.02 \AA$, etc. For the angles, both $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cl}$ and $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{Cl}(\mathrm{A})$ have a value of $117.95(14)^{\circ}$, while the angles of $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)\left(108.4(4)^{\circ}\right)$ and $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(5)$ $\left(109.0(4)^{\circ}\right)$ are slightly different.

As a symmetrical molecular, bonds distances and angles in the symmetric parts were observed approximately identical, e.g. bonds lengths of $\mathrm{Cl}-\mathrm{C}(2)(1.7460(19) \AA$ ) and $\mathrm{ClA}-\mathrm{C}(2 \mathrm{~A})$ (1.7458(19) $\AA$ ) are nearly identical, and the angles values for $C(2)-C(3)-C(6)$ and $C(2 A)-C(3 A)-C(6 A)$ are equivalent (109.16(18) $)^{\circ}$.

Reaction temperature could also affect the palladiumcatalyzed oligomeriztion of tert-butyl acetylene to some extent. At room temperature, 18 h was required and $85 \%$ yield of 2 was obtained (entry 2, Table 1). While controlled at $40^{\circ} \mathrm{C}$, only 12 h was needed, the reaction proceeded swimmingly with $100 \%$ yield of 2 (entry 3 , Table 1 ).

Based on our previous reports [3,7], we proposed plausible pathways for the solvent-controlled palladium-catalyzed oligomerization of tert-butyl acetylene (Scheme 3): cyclotrimerization of tert-butyl acetylene would occur via pathway A, which was considered to involve a series of stepwise cis insertions of
coordinated alkyne 1. (i) Firstly, alkyne 1 inserts into a $\mathrm{Cl}-\mathrm{Pd}$ bond giving 6, (ii) into a vinyl-Pd bond giving a $\sigma$-butadienylPd complex 7, and (iii) then occurs to give a $\sigma$-hexatrienyl-Pd complex 8; which undergoes an successive internal cis insertion. Because there is less steric hindrance in $\mathbf{8}$ (generated from intermediate 7) than $\mathbf{8}^{\prime}$ (generated from intermediate $\mathbf{7}^{\prime}$ ) during the subsequent ring-closure process [7(b)], intermediates 7 and 8 (instead of $\mathbf{7}^{\prime}$ and $\mathbf{8}^{\prime}$ ) were formed in pathway A, (iv) to give the substitute palladiumcyclohexadiene 9 , with the assistance of $\mathrm{CuX}_{2}$ [10], the reaction gave 1,3,5-tri-tert-butylbenzene 2 and regenerated the active $\mathrm{PdX} 2(\mathrm{X}=\mathrm{Cl}$ and Br$)$ quickly. Maitlis and his co-workers had laid emphasis on the mechanism induced by $\mathrm{CuCl}_{2}$ [6].

Pathway B was a little different from pathway A, in pathway A, intermediate 7 was formed, with a series cis addition of alkyne $\mathbf{1}$, product $\mathbf{2}$ was given in the final step. As state above, $\mathbf{7}^{\prime}$ could not be formed in pathway A for steric hindrance reason, while it is interesting that in pathway B , intermediate $7^{\prime}$ was formed readily, with successive reaction with released halogen anion $\left(\mathrm{X}^{-}\right)$, product $3(\mathrm{X}=\mathrm{Cl})$ or $\mathbf{4}(\mathrm{X}=\mathrm{Br})$ was given smoothly.

In the above two processes, the role of $\mathrm{CuX}_{2}$ as an oxidant not only to cleave the $\mathrm{C}-\mathrm{Pd} \sigma$-bonds but to regenerates the active $\mathrm{PdX}_{2}(\mathrm{X}=\mathrm{Cl}$ and Br$)$ species by reoxidize $\mathrm{Pd}(0)$ formed in the process for further reaction cycle. It is noteworthy high ratio of


Fig. 1. Crystal structure of 3. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ are $\mathrm{Cl}-\mathrm{C}(2) \quad 1.7460(19), \quad \mathrm{ClA}-\mathrm{C}(2 \mathrm{~A}) \quad 1.7458(19), \quad \mathrm{C}(1)-\mathrm{C}(2) 1.320(3)$, $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A}) \quad 1.320(3), \quad \mathrm{C}(1)-\mathrm{C}(1 \mathrm{~A}) \quad 1.444(4), \quad \mathrm{C}(2)-\mathrm{C}(3) \quad 1.509(3)$, $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A}) 1.509(3), \mathrm{C}(3)-\mathrm{C}(4) 1.513(3), \mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A}) 1.513(3), \mathrm{C}(3)-\mathrm{C}(5)$ $1.524(3), \mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A}) 1.524(3), \mathrm{C}(3)-\mathrm{C}(6) 1.523(3), \mathrm{C}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A}) 1.523(3)$, $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) 0.880(18), \mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{a}) 0.880(18), \mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A}) 0.97(3), \mathrm{C}(4)-$ $\mathrm{H}(4 \mathrm{~B}) \quad 0.92(3), \mathrm{C}(4)-\mathrm{H}(4 \mathrm{C}) 1.02(3), \mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{a}) 0.98(3), \mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~b})$ $0.92(3), \mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{c}) 1.01(3), \mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A}) 0.95(4), \mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{a}) 0.96(4)$, $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A}) \quad 0.98(3), \quad \mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{a}) \quad 0.97(3), \quad \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(1 \mathrm{~A}) \quad 127.5(2)$, $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1) \quad 117.9(12), \quad \mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{a}) \quad 117.9(12), \quad \mathrm{C}(1)-$ $\mathrm{C}(2)-\mathrm{Cl} \quad 117.95(14), \quad \mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{Cl}(\mathrm{A}) \quad 117.95(14), \quad \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ 109.16 (18), $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A}) 109.16(18), \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5) 109.16(18)$, $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A}) 109.16(18), \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6) 109.16(18), \mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-$ $\mathrm{C}(6 \mathrm{~A}) 109.16(18), \mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5) 109.8(4), \mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A}) 109.7(4)$, $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6) \quad 108.4(4), \mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A}) 108.4(4), \mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(5)$ $109.0(4), \quad \mathrm{C}(6 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A}) \quad 109.0(4), \quad \mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A}) \quad 105.9(16)$, $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{a}) \quad 109.5(16), \quad \mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B}) \quad 105.9(16), \quad \mathrm{C}(3 \mathrm{~A})-$ $\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~b}) 109.5(16), \mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B}) \quad 109.5(16), \mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~b})$ 109.5(16).
$n$ - BuOH would lead to the formation of $\mathbf{3}$ or $\mathbf{4}$, that is to say, $n$ BuOH , a polar protic solvent, play an important role in pathway B , a much more likely role of $n-\mathrm{BuOH}$ is that it dissolves more $\mathrm{CuX}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ than benzene (for $\mathrm{CuX}_{2}$ are typical ionic compounds). When the volume ratio of $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}$ ranged within (9.6/1.0-0/10.6), pathway B would occur. Higher ratio of $n-\mathrm{BuOH}$ helped to dissolve more $\mathrm{CuX}_{2}$ (forming a cation of $\mathrm{Cu}(n-\mathrm{BuOH})_{n}{ }^{2+}$ and solivated halo anion $\left.\mathrm{X}(n-\mathrm{BuOH})_{n}{ }^{-}[9]\right)$.

Obviously, $\mathrm{CuX}_{2}\left(\mathrm{X}(n-\mathrm{BuOH})_{n}{ }^{-}, \mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{X}^{-}\right.$was released in the reaction) are the halide source of $\mathbf{3}$ and $\mathbf{4}$, and the more solivated halo anion $\mathrm{X}(n-\mathrm{BuOH})_{n}{ }^{-}$in solution, the more intermediate $7^{\prime}$ was formed (chemical balance shift right giving $\mathbf{3}$ or $\mathbf{4}$ are favorable for the formation of $\mathbf{7}^{\prime}$ in pathway B).

Although higher ratio of $n-\mathrm{BuOH}$ were favorable for pathway $B$, small amount unpolar unprotic co-solvent benzene was also helpful for pathway B , in like wise, small portion of $n-\mathrm{BuOH}$ in pathway A was also helpful, these might be explained by component behavior in binary solvent system [9].

In water, an insertion reaction of $\mathrm{PdX}_{2}$ with tert-butyl acetylene to give the sole dimer product 5 (Scheme 4 ) occurred. The reason why 5 could be yielded in the absence of $\mathrm{PdX}_{2}$ is that there might be some CuX in $\mathrm{CuX}_{2}$ [11].

In summary, we have developed a general solvent-controlled chemoselective $\mathrm{PdX}_{2}$ and $\mathrm{CuX}_{2}$-catalyzed oligomerization of tert-butyl acetylene. It would not only allow us to construct some new reactions, but also require us to reconsider the role of the solvent in the reported $\mathrm{Pd}(\mathrm{II})$-catalyzed reactions. Further effort associated with solvent effect on the chemoselectivity and mechanistic investigations are currently under progress in our laboratory.


When the volume ratio of $\mathrm{C}_{6} \mathrm{H}_{6} / n-\mathrm{BuOH}$ vary within the range of (9.3/1.3-4.5/6.1), pathway A and pathway B proceed simultaneously, a complex of $2+3$ or $\mathbf{2 + 4}$ will be given respectively.

Scheme 3.


Scheme 4.

## 3. Experimental

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC 400 spectrometer in $\mathrm{CDCl}_{3}$ with TMS as an internal standard. IR spectra were obtained with WQF-410 FTIR spectrometer. GC-MS were recorded on a HP 6890-5937 mass spectrometer. Elemental analyses were performed on a Heraeus CHN-O Rapid elemental analyzer instrument. $\mathrm{HF}_{254}$ plates were used for analytical TLC chromatography.

### 3.1. General procedure for the oligomerization of tert-butyl acetylene

To a mixture of $\mathrm{PdX}_{2}(0.056 \mathrm{mmol})$ and $\mathrm{CuX}_{2}(2 \mathrm{mmol})$ in benzene $/ n-\mathrm{BuOH}$ ( 10.6 ml , desired volume ratio), tert-butyl acetylene ( 1.0 mmol ) was added. Then, the reaction system was stirred at $40^{\circ} \mathrm{C}$ for 12 h , after complete conversion of acetylene as monitored by GC analyses, the mixture was filtered, and the solvents was removed by rotary evaporation to give crude products. The products were then purified by flash column chromatography to afford $\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}$, respectively (hexane).

### 3.2. 1,3,5-Tri-tert-butylbenzene [7(b)] (2)

Hexane:EtOAc (9:1) was used as the eluent: solid, mp $70-73{ }^{\circ} \mathrm{C}$ (lit. mp $73{ }^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR $\delta 1.207(\mathrm{~s}, 27 \mathrm{H}), 6.523$ ( s , $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.9,39.2,117.9,148.0$; MS m/z $246\left(M^{+}\right)$, $219,202,199,183,163,157,143,123,107,91,77,65,57,41$, 29.

## 3.3. (3Z, 5Z)-2,2,7,7-Tetramethyl-3,6-dichloro-3,

 5-dienes (3)Hexane:EtOAc (3:7) was used as the eluent: white crystal, mp $67-68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz ) $\delta 1.208(\mathrm{~s}, 18 \mathrm{H}), 6.524$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta 28.8,39.2,76.7,77.0,77.3,117.9,148.0 ;$ IR (KBr): 1589, 1421, 896, $738 \mathrm{~cm}^{-1}$; MS m/z $236\left(M^{+}\left({ }^{37} \mathrm{Cl}\right)\right)$ $234\left(M^{+}\left({ }^{35} \mathrm{Cl}\right)\right), 219,199,177,163,150,143,123,107,91,77$, 57, 41, 28. Anal. Found: C, 61.56; H, 9.01; Cl, 29.42.

### 3.4. Crystal data (3)

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}, M=117.59$, crystals were grown from petroleum ether, monoclinic, space group: $P 2(1) / n, \quad a=6.2780(8) \AA$, $b=10.3432(14) \AA, c=10.6927(15) \AA, \alpha=90, \beta=105.300(3)$, $\gamma=90^{\circ}, \quad V=669.72(16) \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.164 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda=0.71073 \AA, T=293(2) \mathrm{K}, \mu=0.450 \mathrm{~mm}^{-1}, 4037$ reflection measured, 1582 unique $\left(R_{\mathrm{int}}=0.0750\right)$ were used
in all calculations. Final $R=0.0454$ (obs.), $\quad 0.0670$ (all); $\mathrm{wR}\left(F^{2}\right)=0.1140$ (obs.), 0.1222(all).

## 3.5. (3Z, 5Z)-2,2,7,7-Tetramethyl-3,6-dibromo-3, 5-dienes (4)

Hexane:EtOAc (3:7) was used as the eluent: white crystal, $\mathrm{mp} 74-75{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz ) $\delta 1.230(\mathrm{~s}, 18 \mathrm{H}), 6.590$ (s, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 29.2,29.6,31.6,40.3,119.4,123.6$, 144.7; IR (KBr): 1605, 1552, 1422, 896, $763 \mathrm{~cm}^{-1}$; MS m/z 324 $\left(M^{+}\left({ }^{81} \mathrm{Br}\right)\right), 322\left(M^{+}\left({ }^{79} \mathrm{Br}\right)\right), 309,245,230,213,201,187,173$, 164, 149, 133, 121, 107, 91, 77, 57, 41, 29. Anal. Found: C, 44.41, H, 6.21; Br, 49.36.

### 3.6. 2,2,7,7-Tetramethyl-3,5-octadiyne [12] (5)

Hexane:EtOAc (9:1) was used as the eluent: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 1.227(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 28.8,39.2$, 76.7, 77.0, 77.3, 117.9, 148.0; IR (KBr): 2967, 1729, 1282, 1076, $881,414 \mathrm{~cm}^{-1} ;$ MS m/z $162\left(M^{+}\right), 147,132,119,105,91,77$, $55,41,39$.

## Acknowledgements

We are grateful to Guangxi Zhuang Autonomous Region Department of Education (no. 200508193), Youjiang Medical College for Nationalities (Grant 200505006) for financial support.

## References

[1] For reviews and recent representative papers on palladium-catalyzed reaction to synthesize 1,3-dienes, see:
(a) A.A. Vasil'ev, E.P. Sterebryakov, Russ. Chem. Rev. 70 (2001) 735;
(b) N. Miyaura, Cross-Coupling Reaction, Springer, Berlin, 2002;
(c) E. Negishi (Ed.), Handbook of Organo-palladium Chemistry for Organic Synthesis, Wiley/Interscience, New York, 2002;
(d) X. Zeng, Q. Hu, M. Qian, E. Negishi, J. Am. Chem. Soc. 125 (2003) 13636;
(e) X. Zeng, M. Qian, Q. Hu, E. Negishi, Angew. Chem. Int. Ed. 43 (2004) 2259, and references therein;
(f) M. Qian, Z. Huang, E. Negishi, Org. Lett. 6 (2004) 1531;
(g) Z. Wang, X. Lu, A. Lei, Z. Zhang, J. Org. Chem. 63 (1998) 3806;
(h) T. Uno, S. Wakayanagi, Y. Sonoda, K. Yamamoto, Synlett 2003 (1997).
[2] For reviews and representative papers on the synthesis of benzenes by using palladium catalysts, see:
(a) S. Saito, Y. Yamamoto, Chem. Rev. 100 (2000) 2901;
(b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 96 (1996) 49;
(c) M. Rubin, A.W. Sromek, V. Gevorgyan, Synlett (2003) 2265;
(d) A. Takeda, A. Ohno, I. Kadota, V. Gevorgyan, Y. Yamamoto, J. Am. Chem. Soc. 119 (1997) 4547;
(e) D. Peña, S. Escudero, D. Pérez, Angew. Chem. Int. Ed. 37 (1998) 2659;
(f) V. Gevorgyan, U. Radhakrishnan, A. Takeda, M. Rubina, M. Rubin, Y. Yamamoto, J. Org. Chem. 66 (2001) 2835;
(g) J. Li, Acta Chim. Sinica 62 (3) (2004) 341.
[3] (a) J. Cheng, H. Jiang, Eur. J. Org. Chem. 3 (2004) 643;
(b) J. Cheng, H. Jiang, X. Ouyang, Q. Zhang, Hefei-Huanshan, Proceedings of the Fifth International Symposium on Green Chemistry, P.R. China, 2002, p. 14;
(c) H. Jiang, Curr. Org. Chem. 9 (3) (2005) 289;
(d) J. Cheng, Green Chem., 2006 (on contribution).
[4] E.S. Johnson, G.J. Balaich, P.E. Fanwick, I.P. Rothwell, J. Am. Chem. Soc. 119 (1997) 11086.
[5] N.P. Grimster, C. Gauntlett, C.R.A. Godfrey, M.J. Gaunt, Angew. Chem. Int. Ed. 44 (2005) 3125.
[6] P.M. Maitlis, J. Organomet. Chem. 200 (1980) 161.
[7] (a) J. Cheng, J. Li, H. Jiang, Syn. Commun. 33 (17) (2003) 3303; (b) J. Li, H. Jiang, M. Chen, J. Org. Chem. 66 (2001) 3627.
[8] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (8) (2005) 2999.
[9] (a) C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Cambridge, 1990;
(b) C. Reichardt, Solvent and Solvent Effects in Organic Chemistry, 2nd ed., Verlag Chemie, Weinheim, 1988, pp. 14-68.
[10] It has been reported that $\mathrm{CuCl}_{2}$ as an oxidant could cleave $\mathrm{C}-\mathrm{Pd} \sigma$-bonds: (a) J.E. Bäckvall, R.E. Nordberg, J. Am. Chem. Soc. 102 (1) (1980) 393;
(b) J. Ji, C. Zhang, X. Lu, J. Org. Chem. 60 (1995) 1160;
(c) G. Zhu, S. Ma, X. Lu, Q. Huang, J. Chem. Soc., Chem. Commun. (1995) 271;
(d) J.H. Li, H.F. Jiang, A.-Q. Feng, L.Q. Jia, J. Org. Chem. 64 (1999) 5984.
[11] (a) Y.S. Kim, S.H. Jin, S.L. Kim, D.R. Hahn, Arch. Pharm. Res. 12 (1989) 207;
(b) K.H. Matsunaga, M. Yamamoto, H. Fujito, H. Mori, M.K. Tukata, Chem. Pharm. Bull. 38 (1990) 3480;
(c) R.A. Raphael, E.C. Taylor, H. Wynberg, Advances in Organic Chemistry, vol. 4, Mack Printing Co., Easton, PA, New York, 1963, pp. 225-328; (d) P. Siemen, R.C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 39 (2000) 2632.
[12] (a) M. Schlosser, C. Tarchini, D. Tran Dinh An, R. Ruzziconi, P.J. Bauer, Angew. Chem. Int. Ed. 20 (1981) 1041;
(b) A.P. Meshcheryakov, L.V. Petrova, Russ. Chem. Bull. 13 (1964) 1573; (c) M. Horacek, P. Stepnicka, R. Gyepes, I. Cisarova, M. Polasek, K. Mach, P.M. Pellny, V.V. Burlakov, W. Baumann, A. Spannenberg, U. Rosenthal, J. Am. Chem. Soc. 121 (45) (1999) 10638.


[^0]:    * Corresponding author at: School of Basic Medical Science, Youjiang Medical College for Nationalities, Baise 533000, China.

    E-mail address: chengjins@hotmail.com (J.-S. Cheng).

